1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
| import numpy as np import torch from torchvision import datasets, transforms import matplotlib.pyplot as plt import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim
train_loader = torch.utils.data.DataLoader( datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True)
def imshow(img): img = img / 2 + 0.5 npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show()
dataiter = iter(train_loader) images, labels = dataiter.next() imshow(torchvision.utils.make_grid(images))
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10)
def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features
net = Net() print(net)
image = images[:2] label = labels[:2] out = net(image) print(out)
criterion = nn.CrossEntropyLoss() loss = criterion(out, label) print(loss)
optimizer = optim.SGD(net.parameters(), lr=0.01) image = images[:2] label = labels[:2] optimizer.zero_grad() out = net(image) loss = criterion(out, label) loss.backward() optimizer.step()
def train(epoch): net.train() running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 0: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0
train(1)
correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('网络在10000个测试图像上的准确率为:%d %%' % (100 * correct / total))
|